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Abstract—3D building reconstruction from imaging data is an important task for many applications ranging from urban planning to
reconnaissance. Modern Novel View synthesis (NVS) methods like NeRF and Gaussian Splatting offer powerful techniques for
developing 3D models from natural 2D imagery in an unsupervised fashion. These algorithms generally require input training views
surrounding the scene of interest, which, in the case of large buildings, is typically not available across all camera elevations. In
particular, the most readily available camera viewpoints at scale across most buildings are at near-ground (e.g., with mobile phones)
and aerial (drones) elevations. However, due to the significant difference in viewpoint between drone and ground image sets, camera
registration – a necessary step for NVS algorithms – fails. In this work we propose a method, DRAGON, that can take drone and
ground building imagery as input and produce a 3D NVS model. The key insight of DRAGON is that intermediate elevation imagery
may be extrapolated by an NVS algorithm itself in an iterative procedure with perceptual regularization, thereby bridging the visual
feature gap between the two elevations and enabling registration. We compiled a semi-synthetic dataset of 9 large building scenes
using Google Earth Studio, and quantitatively and qualitatively demonstrate that DRAGON can generate compelling renderings on this
dataset compared to baseline strategies.

Index Terms—3D Building Reconstruction, Novel View Synthesis, 3D Gaussian Splatting, Multi-Elevation Reconstruction
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1 INTRODUCTION

1 3D building reconstruction is an important task that is2

useful in a variety of applications from urban plan-3

ning and monitoring to disaster relief and reconnaissance.4

Traditional building reconstruction methods assume a data5

modality such as aerial LiDAR [1], [2], [3] as input, which is6

expensive and offers limited viewpoint coverage. The pro-7

liferation of standard imaging sensors, along with powerful8

recent advances in Novel View Synthesis (NVS) algorithms9

like Neural Radiance Fields (NeRF) [4] and 3D Gaussian10

Splatting (3DGS) [5], offer the potential to develop 3D build-11

ing models in a cheap and scalable manner. Natural images12

of buildings are most readily acquired at two elevations:13

near-ground (such as those taken by mobile phones) and14

aerial (such as those taken by drones), representing highly15

contrasting structural viewpoints (see Fig. 1). 3D reconstruc-16

tion that can work with such sparse footage without needing17

intermediate elevation imagery would enable large-scale18

structural modeling for a variety of otherwise inaccessible19

scenarios. For this reason, in this study, we aim to develop a20

NVS-based method that can combine only drone and ground21

building imagery into a coherent 3D model of a building’s22

outer structure.23

Standard variants of NeRF and 3DGS algorithms assume24

a set of input 2D images covering a continuous “shell” of25

viewpoints around a scene. These algorithms first register26

the views together into a common reference system by27

finding matching features, and then combine their informa-28

tion into a 3D model via a rendering-based optimization.29

Unfortunately, the crucial registration step poses significant30

challenges when given only aerial and ground footage as31

• This paper is under review for ICCP 2024 and the PAMI special issue on
computational photography. Do not distribute.

Fig. 1. Sample drone and near-ground images from our collected
Google Earth Studio dataset. We show views of three large build-
ings from drone-level (top) and ground-level (bottom) elevations. These
opposing elevations offer highly contrasting viewpoints of the physical
structures, which can provide complementary information towards 3D
modeling. However, the lack of easily matching visual features across
elevations inhibits registration, a key step in novel view synthesis algo-
rithms like NeRF [6] and 3D Gaussian Splatting [5].

input. As shown in the examples in Fig. 1, the same structure 32

on a building can look completely different in scale and 33

viewpoint across elevations. Indeed, we find that registra- 34

tion packages such as COLMAP [7] completely fail when 35

given such data because of a lack of robust feature point 36

matches. Hence, while aerial and ground building footage 37

are widely accessible, they are apparently not immediately 38

usable for 3D building reconstruction without further cam- 39

era pose input metadata. 40

In this work, we address the challenge of large-scale 41

building reconstruction where only drone and near-ground 42

image sets are available, without known camera poses. To 43

do this, we draw on three insights. First, while registration 44

methods fail given only drone and ground images, they are 45

successful when intermediate elevation images are avail- 46



ANONYMOUS ICCP 2024 SUBMISSION ID 24 2

able. Second, view rendering methods such as NeRF and47

3DGS are capable of limited extrapolation beyond their train-48

ing view range, likely due to inherent implicit regularization49

in their representations. Third, as shown in previous studies50

this extrapolation ability may be enhanced using perceptual51

regularization. We use these ideas to develop a framework,52

DRAGON (for DRone And GrOuNd Rendering). DRAGON53

begins by training a 3D model on aerial footage only, pro-54

viding an initial rendering model with full context of the55

coarse layout of the structure. The algorithm then iteratively56

alternates between generating progressively lower-elevation57

imagery and updating its representation with previously58

generated views. DRAGON eventually reaches the lowest59

elevation (ground), at which point all of the real and gener-60

ated views are used to perform registration and generate a61

final model. DRAGON is conceptually simple, and requires62

no further annotation or information per view to operate.63

We demonstrate the effectiveness of DRAGON using the64

3DGS rendering algorithm on a new semi-synthetic dataset65

we build using Google Earth Studio consisting of 9 building66

sites (see Fig. 2). Results first show that popular registra-67

tion packages like COLMAP fail to register the drone and68

ground footage on any of these scenes. However, DRAGON69

aligns 97.47% of the input views (with average 0.01m posi-70

tion and 0.12◦ rotation errors). With camera poses obtained71

using DRAGON, we demonstrate that DRAGON produces72

high-quality renderings across all viewing angle/elevation73

scenarios. We show that adding perceptual regularization74

encoded by deep feature spaces like DreamSim [8] and75

OpenCLIP [9] further improves quantitative and qualitative76

performance. We conclude by discussing limitations and77

considerations when using DRAGON.78

2 RELATED WORK79

2.1 Building Reconstruction from LIDAR and Aerial80

Footage81

Several prior works estimate building structures from LI-82

DAR footage [1], [2], [3], [10], [11], [12]. LIDAR directly83

provides 3D scene information, but is also expensive to84

acquire and therefore limited in availability. Several meth-85

ods also try to infer 3D information of buildings from86

monocular (aerial) imagery alone [13], [14], [15]. Limited87

by the information from a single elevation, these methods88

offer coarse 3D details, such as building height and general89

shape. In contrast, we attempt to build full 3D rendering of90

outer building structures based on both aerial and ground91

images, without additional modalities. In addition, our tech-92

nique builds on differentiable view rendering techniques93

like 3DGS, which is fundamentally different from these past94

approaches.95

2.2 Neural/Differentiable Rendering96

Neural Radiance Fields (NeRF) [6], [16], [17] are a family of97

deep neural network techniques that have brought a new98

wave of ideas and state-of-the-art results to view synthesis.99

NeRF reconstructs scene parameters including geometry,100

scattered radiance, and camera parameters [18] in an end-101

to-end fashion based on a simple reconstruction loss over102

the input views. NeRF uses neural networks to fit the103

scene parameters, which are capable of regressing on highly 104

nonlinear, complex functions typical of real-world scenes. 105

This leads to a continuous scene representation, which can 106

be rendered immediately for any desired novel view simply 107

by evaluating the representation for each pixel. 108

Recently, 3D Gaussian Splatting (3DGS) [5] has emerged 109

as a compelling alternative to NeRF. 3DGS explicitly repre- 110

sents a scene with (millions of) 3D Gaussian objects with op- 111

timizable 3D location and appearance parameters. Crucially, 112

these parameters are optimized in an end-to-end fashion 113

using a reconstruction loss by “splatting” the Gaussians 114

onto 2D planes. 3DGS has proven far faster to train for large 115

scenes than NeRF. Due to this reason, we use 3DGS in our 116

experiments. 117

2.3 Neural Rendering for Large Scenes 118

NeRF and 3DGS also have some demonstrated successes 119

on large scenes. The first work in this space was Block- 120

NeRF [19], which modeled city blocks from ground-level 121

footage. BungeeNeRF [20] is the closest related study 122

to ours, which reconstructs buildings using dense multi- 123

elevation imagery from drone to ground elevations. That 124

study pointed out that scale differences resulting from cam- 125

eras positioned at varying altitudes can pose significant 126

challenges to rendering. For example, the level of detail 127

and spatial coverage varies significantly across different 128

altitudes. These scaling problems are somewhat mitigated 129

with follow-up NeRF variants [19], [21], [22], [23]. Recently, 130

VastGaussian [23] extended 3DGS to handle large building 131

scenes, mostly from aerial imagery. Unlike our problem 132

setup, all of these algorithms assume a densely sampled set 133

of input 2D views at orientations and elevations, and can 134

not handle the case of combining only drone and ground 135

footage into one coherent 3D model. 136

2.4 Registration and Camera Pose Estimation 137

A crucial first step for NVS algorithms is image registration, 138

i.e., obtaining the camera poses for each input image. This is 139

commonly achieved by running the Structure-from-Motion 140

(SfM) [24] library COLMAP, designed for 3D reconstruction 141

from 2D images. The process begins by extracting features 142

from each image, followed by matching these features across 143

multiple images to establish corresponding points [7]. The 144

output of registration includes intrinsic camera parameters, 145

camera poses (extrinsic parameters), and 3D point clouds. 146

Other image registration and camera pose estimation algo- 147

rithms also exist, such as SLAM-based methods [25], and 148

deep learning models such as SuperGlue [26]. Some NeRF 149

and 3DGS variants relieve the reliance on SfM prepocess- 150

ing by incorporating camera pose estimation directly into 151

the optimization framework [18], [27], [28]. These methods 152

work reasonably for normal-sized objects and with sparse 153

viewpoints that cover the full range of the scene, but do 154

not work with large ranges of missing viewpoints, as in our 155

problem setup. 156

3 BUILDINGS-NVS DATASET 157

We introduce Buildings-NVS, a dataset comprising multi- 158

elevation imagery from 9 building sites using Google Earth 159
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TABLE 1
Camera altitudes/trajectory radii/target altitudes (all measured in meters) per elevation for each building in our collected dataset

Buildings-NVS. The targeted altitude refers to the point where the perpendicular line from the center of the building intersects the plane at the
targeted height where the camera is aimed. Each orbit from 5 different elevations consists of 61 images positioned with evenly spaced camera

locations. We selected these values manually by focusing on relevant perceptual characteristics while keeping most of the structure in view.

Elevation
Building Arc de

Triomphe Colosseum Duomo di
Milano

Eiffel
Tower

Himeji
Castle

Piazza del
Duomo

Space
Needle

Sydney
Opera
House

The
Gateway

Arch
Ground 101/250/89 77/313/52 177/250/153 101/438/89 92/250/67 58/250/34 83/188/71 60/438/48 166/313/166
Mid 1 201/313/89 127/375/52 250/438/152 201/500/89 154/313/67 146/250/34 195/250/71 148/438/48 240/375/166
Mid 2 301/375/89 252/438/52 402/500/177 351/625/114 279/375/67 246/313/34 345/250/95 298/563/48 403/438/203
Mid 3 451/500/89 452/500/52 600/438/152 601/750/151 404/375/67 346/313/34 495/375/120 498/563/48 603/563/203
Drone 701/313/89 702/500/52 802/375/152 1000/375/177 604/313/67 596/313/34 695/313/145 748/500/48 803/375/203

Fig. 2. Visual depictions of the 9 buildings in our Buildings-NVS
dataset. These buildings have unique characteristics from height to
architecture style and backgrounds.

Studio 1 (see Table 1 and Fig. 2). The 9 buildings are diverse160

in many aspects, including location (spanning four conti-161

nents), height, architectural styles, backgrounds (e.g., water162

bodies, trees, other buildings), symmetry, and occlusions.163

For each building, we captured images over five camera ele-164

vations ranging from near-ground to high aerial elevations.165

For each elevation, we sampled 61 images evenly along a166

circle, with the camera pointed at a particular target 3D167

location which affects the vertical rotation of the camera. We168

manually selected the camera elevations, target elevations,169

and trajectory radii per building to focus on relevant per-170

ceptual characteristics while keeping most of the structure171

in view. We present these parameters in Table 1. Note that172

Google Earth Studio permits a different lower limit on173

camera elevation per location, leading to different ground174

elevations across buildings in our dataset. We partitioned175

these images into training and testing subsets by elevation176

(see Fig. 3. The training dataset consists of elevations X0
177

(ground) and X4 (drone), and the testing dataset comprises178

all elevations (X0 − X4). Each building has 122 training179

images and 305 testing images.180

4 METHODS181

4.1 Background on 3D Gaussian Splatting (3DGS)182

In 3D Gaussian splatting, a set of 3D Gaussian objects is183

used to represent a scene. Initialized with point clouds184

1. https://www.google.com/earth/studio/

from structure-from-motion [24], each Gaussian is defined 185

spatially by: 186

G(x) = exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (1)

where µ and Σ represent the spatial average and the co- 187

variance matrix. Additionally, each Gaussian has an opacity 188

factor o and a color c conditioned on viewing perspective. 189

During rasterization, each 3D Gaussian is projected onto 190

the 2D image space from a particular viewing angle via a 191

projection matrix. The color of a pixel in a rendered image 192

is obtained by alpha-blending N 2D Gaussians arranged 193

in a depth-aware sequence from the nearest to the farthest 194

relative to the camera viewpoint’s perspective: 195

C =
∑
i∈N

τiαici with τi =
i−1∏
j=1

(1− αj), (2)

where α is a product of the opacity o and the likelihood of 196

the pixel coordinate in image space. The Gaussian parame- 197

ters are then optimized using a rendering loss function over 198

the input 2D views: 199

L3DGS(I, Î) = L1(I, Î) + λssimLssim(I, Î), (3)

where L1(·, ·) measures pixelwise L1 distance, Lssim(·, ·) 200

measures SSIM [29] distance, and λssim is a tradeoff hy- 201

perparameter. 202

4.2 DRAGON 203

We assume as input two sets of images Xground and Xdrone, 204

depicting the building from ground and drone elevations 205

(see Fig. 3). We assume these images are reasonably dis- 206

tributed at different viewing angles in order to give a full 207

360-degree coverage of the building. Our goal is to develop 208

one 3D NVS algorithm (3DGS in our experiments) based on 209

this imagery. 210

An obvious first approach to solve this problem is to 211

simply run the NVS model on the provided views, de- 212

scribed in Alg. 1 (BASIC). However, this requires camera 213

poses as input, produced by a registration package such 214

as COLMAP [7]. Such registration algorithms typically use 215

Structure-from-Motion techniques [30], using a key assump- 216

tion that the input set consists of overlapping images of the 217

same object, taken from different viewpoints. However, in 218

the case where only drone and near-ground image sets are 219

available, visual overlap across sets is limited. Furthermore, 220

even if there is visual overlap between image sets, high 221
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Ground (101m) 

Mid 1 (201m) 

Mid 2 (351m) 

Mid 3 (601m) 

Drone (1000m) 

Train

Test

Fig. 3. Train/test split of images for a given scene (Eiffel Tower) from our proposed Buildings-NVS dataset. (Left) Training data covers only
drone and ground elevations. (Right) Testing data covers all five elevations including drone and ground (due to space constrains, we provide sample
images from middle three elevations in this figure).

COLMAP 3DGS

Lpixel

Lperc

XN

XN-1

Xk

XN

XN-1

Xk

Ik

XN

XN-1

Xk

Xk-1

k-1

I k

I

XN

XN-1

Xk

Point Cloud

Input Views with Camera PosesInput Views

a) Dragon iteration b) Dragon internals

Fig. 4. Overview of DRAGON’s iterative pipeline. (Left) We iteratively render viewpoints starting from aerial elevations towards ground. Given
footage from elevations XN , · · ·Xk, we generate views for elevation Xk−1. (Right) We feed the accumulated views into COLMAP to obtain the
corresponding camera poses and point cloud, which are then passed to the 3DGS model. The model is trained using pixel-wise and perception-wise
losses (Equation 4). Blue color denotes training images, while green color represents images rendered for the next elevation.

Algorithm 1 BASIC(model, Xtrain, Ctrain, Ctest)

Given NVS model, train images Xtrain,
train camera poses Ctrain, test camera poses Ctest

1: model.train(Xtrain, Ctrain)
2: Xtest = model.test(Ctest)
3: return Xtest

disparity in feature quality makes it challenging to find222

correspondences.223

We do find, however, that registration succeeds when in-224

termediate level images are provided, serving as a “bridge”225

between the ground and aerial elevations (see Fig. 1). This226

insight motivates DRAGON, described in Alg. 2, which227

extrapolates intermediate elevation imagery from the drone228

altitude views in an iterative manner (see Sec. 4.2.1). After229

generating images across all elevations, DRAGON registers230

all views (real and generated) together (lines 7-8 of Alg. 2).231

Finally, using the original training views only along with232

their (now inferred) camera poses, we construct a 3D model233

using an NVS algorithm like 3DGS (line 9). We describe234

details of the iterative process and loss function in the235

following sections.236

4.2.1 Intermediate Elevation Image Generation237

We generate intermediate elevation images in an iterative238

manner, consisting of repeated steps of registration and ex-239

trapolated view rendering. We begin the process using only240

drone input images because they cover the entire context241

TABLE 2
Overview of notation used in DRAGON.

Symbol Description
Xtrain Train images
Xtest Test images
Xi Images from elevation level i
X0 Images from ground level
XN Images from drone level
Xcum Images from accumulated elevation levels
Ii Image sampled from elevation level i
Îi Novel image rendered from elevation level i

Ctrain Camera poses for train images
Ctest Camera poses for test images
Ci Camera poses for images from elevation level i

Ccum Camera poses for images from accumulated el-
evation levels

model-1H A ”1-headed” model trained on ground truth
images from a single elevation

model-2H A ”2-headed” model trained on ground truth
images from both drone and ground elevations

of the building and are therefore also easier to register to 242

one another with few errors. As detailed in lines 3-5 of 243

Alg. 2, we iteratively expand the viewing range of the NVS 244

model by registering the current cumulative input image set, 245

retraining the NVS model using these images and registered 246

poses, generating new (extrapolated) views at camera poses 247

in the next lowest elevation level, and adding these new 248

views to the cumulative image set. Eventually, this process 249

reaches the ground elevation, and stops. 250
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(a) Reference Image

0.60 (-0.08) | 0.09 (+0.05)LPIPS: 0.52 | DreamSim: 0.16

(c) Different Geometry(b) Same Geometry, Rendered

Fig. 5. DreamSim vs. LPIPS While LPIPS score in image (c) increased compared to same geometry in iamge (c), DreamSim score decreased,
meaning Dreamsim perceive image (c) being more similar to the reference image compared to the image (b).This suggests that DreamSim places
greater emphasis on perceptual image quality rather than geometric differences (spatial displacement), as long as the image being assessed shares
content similarities with the reference image. Perceptual distance measured by DreamSim is more robust to geometry changes than LPIPS metric
thus being more suitable for an auxiliary loss function as a regularizer.

Algorithm 2 DRAGON(model, Xtrain, N)

Given NVS model, Xtrain = X0 ∪XN ,
number of elevation levels N

1: Xcum = XN

2: for i = N − 1 to 0 do % iterate over elevations
3: Ccum = COLMAP(Xcum)
4: X̂i−1 = BASIC(model, Xcum, Ccum, Ci−1)
5: Xcum = Xcum ∪ X̂i−1

6: end for
7: Ctrain = COLMAP(Xcum)
8: return BASIC(model, Xtrain, Ctrain, Ctest)

4.2.2 Perceptual Regularization for Improved Extrapolation251

Novel view synthesis methods like 3DGS work best when252

interpolating novel views that are nearby a subset of input253

training views. Conversely, 3DGS performance degrades254

rapidly when extrapolating target views that are significantly255

far from training viewpoints, as illustrated in Fig. 6. Render-256

ing intermediate elevation imagery from drone and ground257

imagery is closer to extrapolation since the input views are258

so far apart, posing a significant challenge. Rendering errors259

affect both registration (propagating errors in landmarks),260

and view synthesis steps of DRAGON (see Fig. 7) (b) Basic.261

To address this challenge, we propose adding perceptual262

regularization to the basic 3DGS loss function in Eq. 3 to263

encourage extrapolated rendered views to be perceptually264

similar to nearby 3DGS training views. Perceptual similarity265

metrics have been well-studied in computer vision, and266

popular current metrics are based on measuring distances267

in feature spaces encoded by deep neural networks. We268

consider two such models, DreamSim [8] and OpenCLIP.269

DreamSim encodes features particularly designed to cor-270

relate with humans on semantic visual perception tasks.271

We find in our own analysis (see Fig. 5) that Dream-272

Sim is superior to the widely used LPIPS metric for our273

task. LPIPS tends to perceive significant differences be-274

tween image patches that have some geometrical distor-275

tions, even when they share the same semantic content.276

This is a negative property for our task, since we intend277

to compare images with slight changes to camera pose. In278

contrast, DreamSim prioritizes perceptual image similarity279

over geometric disparities, rendering it more suitable as280

an auxiliary loss function for DRAGON. We additionally 281

consider OpenCLIP because it captures a different type of 282

semantically-guided representation to DreamSim based on 283

language. Such vision-language models have been success- 284

fully shown to provide regularization for NVS methods, 285

including NeRF-based approaches [31], [32], [33], [34] as 286

well as diffusion-based ones [35], [36], [37]. 287

During iteration i of Algorithm 2, we sample an image 288

Ik from a randomly chosen elevation k, where N < k ≤ 289

i, along with its corresponding predicted image Îk, and a 290

predicted image Îk+1 from the previous lower elevation. 291

Our loss function is: 292

LDRAGON (Ik, Îk, Îk+1) = L3DGS(I
k, Îk)

+ λDSLDS(I
k, Îk+1)

+ λCLIPLCLIP(I
k, Îk+1) (4)

where LDS(·, ·) and LCLIP(·, ·) are distances computed 293

using DreamSim and CLIP, and λDS and λCLIP are tradeoff 294

hyperparameters. 295

5 EXPERIMENTS 296

5.1 Implementation Details 297

5.1.1 Registration 298

We use COLMAP for registration because it is the most 299

widely used registration package, and because its GPU- 300

accelerated SIFT [38] feature extraction offers efficient per- 301

formance. We used an exhaustive matcher between each 302

image pair. 303

5.1.2 DRAGON and Baseline Variants 304

Since the basic 3DGS model cannot register both drone 305

and ground images together, we explore two classes of 306

methods: 1-Headed, i.e. those trained on images from a 307

single elevation, and 2-Headed, i.e. those trained on both 308

drone and ground images. 309

Basic-Drone is trained using vanilla 3DGS (Eq. 3) on drone 310

images registered with COLMAP. 311

Basic-Ground is trained using vanilla 3DGS (Eq. 3) on 312

ground images registered with COLMAP. 313

Oracle D&G is trained using vanilla 3DGS (Eq. 3) with 314

ground and drone elevation images, utilizing ground truth 315

camera poses. 316
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TABLE 3
Quantitative evaluation on drone and ground registration. The percentage of registered images averaged over buildings when estimating

camera poses separately from the drone and ground level image sets, as well as when estimating camera poses by combining them. It shows that
the percentage of registered images higher when using our iterative scheme, and using perceptual regularizer help in registration. Drone and

ground imagery sets may not be registered together at once since they have significant scale variations in levels of detail and field of view.

1-HEADED 2-HEADED

COLMAP COLMAP COLMAP DRAGON
vanilla

DRAGON
DreamSim

drone-only ground-only drone&ground
Matched (%) ↑ 100.00 79.58 50.00 88.00 97.47

Errors for matched rotation (◦) ↓ 0.76/0.68 19.13/2.39 0.69/0.60 0.15/0.12 0.12/0.10
(Avg/Std) position (m) ↓ 0.02/0.02 0.50/0.05 0.02/0.02 0.02/0.02 0.01/0.01

Oracle All is trained using vanilla 3DGS (Eq. 3) with images317

from all elevations, including ground, drone, and interme-318

diate levels. Ground truth camera poses are used for these319

images.320

Dragon Vanilla is trained using vanilla 3DGS (Eq. 3) with321

ground and drone elevation images, along with camera322

poses obtained from our proposed iterative registration323

scheme.324

Dragon-2H DreamSim is trained with images from ground325

and drone elevations and using 3DGS equipped with the326

LDS auxillary loss (Eq. 4 with λCLIP set to 0). We empirically327

determined the value of λDS to be 0.01 based on the Dream-328

Sim distance between images from adjacent elevations. We329

train Dragon-2H Dreamsim for 30k iterations during each330

registration iteration and for 30k iterations the final render-331

ing. We used en ensemble model of DreamSim which uses332

DINO ViT-B/16 [39], CLIP ViT-B/16 B/32 [40], and Open-333

CLIP ViT-B/32 [9]. Additionally, it utilizes camera poses334

obtained from our proposed iterative registration scheme.335

Dragon-2H DreamSim+CLIP. We train Dragon-2H Dream-336

Sim for 25k iterations for the final rendering and finetune337

the model by setting λCLIP to 0.01 in Eq. 4 for an additional338

5k iterations. We used ViT-G/14 model of OpenCLIP which339

was pretrained on the LAION-2B dataset.340

5.1.3 NVS model341

We adopt 3DGS [5] as a novel view synthesis method342

for extrapolating images in iterative registration due to343

its significantly faster training speed, inference time and344

reconstruction quality compared to NeRF models with com-345

parable rendering quality [17], [41], [42].346

5.1.4 Hyperparameters347

Unless noted otherwise, we follow the experimental setup348

in the 3DGS study [5]: we reset opacity every 3k iterations349

and use densification every 100 iterations. The spherical350

harmonics coefficients, which encode the appearance of351

each Gaussian splat, are set to 0.0025. Additionally, opac-352

ity, scaling, and rotation parameters are set to 0.05, 0.005,353

and 0.001. For optimizing the 3D position of the Gaussian354

splats, we employ a learning rate schedule ranging from355

1.6 × 10−4 to 1.6 × 10−6 and use the Adam optimizer [43].356

λssim from the loss function (Eq. 2) was set to 0.2. Our357

iterative registration scheme incorporates three intermediate358

levels between drone and ground levels resulting in four359

registration iterations.360

5.1.5 Training Time 361

We train all methods on NVIDIA A100 GPUs. Using a single 362

GPU, training any DRAGON method on a building requires 363

roughly 30 minutes, with an inference time of 8 rendered 364

views per second. 365

5.2 Evaluation 366

5.2.1 Registration Evaluation 367

To evaluate obtained drone and ground camera poses, we 368

need ground truth camera poses. We establish a pseudo- 369

ground truth registration, we densely cover the building 370

across elevations, supplementing additional images at in- 371

termediate levels and run COLMAP to get a dense camera 372

poses. We calculated the percentage of registered matched 373

images and the position and rotation errors for the matched 374

images. Image registration entails a variable coordinate sys- 375

tem, influenced by the position of keypoints. Thus, aligning 376

the coordinate system is a prerequisite for accurate error 377

computation against pseudo ground truth [44], [45]. 378

5.2.2 Reconstruction Evaluation Metrics 379

To quantitatively evaluate reconstruction quality, we use the 380

following metrics: Peak Signal-to-Noise Ratio (PSNR), Struc- 381

tural Similarity (SSIM) [29], and Learned Perceptual Image 382

Patch Similarity (LPIPS) [46]. Given ground truth image I 383

and a rendered view Î , PSNR is defined as PSNR(I, Î) = 10· 384

log10

(
MAX(I)2/MSE(I, Î)

)
, where MAX(I) is the largest 385

pixel value of image I and MSE denotes pixel-wise mean 386

squared error. Higher PSNR values indicate greater simi- 387

larity between images. SSIM assesses structural similarity 388

considering luminance, contrast, and structure, making it 389

less sensitive to color or brightness changes and perception 390

aligned. Higher SSIM values indicate greater similarity be- 391

tween images. LPIPS measures the distance between over- 392

lapping patches in the input and reconstructed images in 393

a deep feature space. Lower LPIPS values indicate higher 394

perceptual similarity. 395

5.3 Registration Results 396

We first demonstrate that DRAGON enables accurate regis- 397

tration across drone and ground views. Table 3 presents a 398

quantitative comparison between our registration pipeline 399

and COLMAP applied directly on drone and ground data. 400

While COLMAP manages to register drone images, it fails 401

entirely to register ground images due to significant scale 402

variations in levels of detail and field of view. In contrast, 403
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TABLE 4
Quantitative evaluation of view synthesis methods. We report PSNR, SSIM, and LPIPS metrics averaged across all nine scenes, for three distinct
elevation groups: ’drone and ground’ (training data), ’mid elevations’ (unseen data), and ’all elevations’ (combining all data). Comparison is made
between 1-headed methods, trained solely on images from one elevation, and 2-headed methods, trained using both ground and drone images.

ground and drone mid elevations all elevations
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

2-HEADED METHODS
DRAGON-2H Vanilla 25.68 0.85 0.17 17.38 0.54 0.40 20.70 0.66 0.31
DRAGON-2H DreamSim 25.77 0.85 0.17 18.11 0.57 0.37 21.17 0.68 0.29
DRAGON-2H DreamSim+CLIP 25.76 0.85 0.17 18.03 0.57 0.37 21.12 0.68 0.29

1-HEADED METHODS (ground)
Basic 15.97 0.47 0.45 9.35 0.24 0.65 12.00 0.33 0.57
DRAGON-1H Vanilla 17.55 0.54 0.41 9.02 0.26 0.66 12.43 0.37 0.56
DRAGON-1H 18.60 0.55 0.38 11.72 0.31 0.57 14.47 0.40 0.49

1-HEADED METHODS (drone)
Basic 17.07 0.55 0.37 17.25 0.52 0.41 17.17 0.53 0.39
DRAGON-1H Vanilla 17.06 0.55 0.37 17.30 0.52 0.41 17.21 0.53 0.39
DRAGON-1H 17.07 0.55 0.38 17.31 0.51 0.42 17.21 0.53 0.40

1-HEADED VS 2-HEADED
Basic ground 15.97 0.47 0.45 9.35 0.24 0.65 12.00 0.33 0.57
Basic drone 17.07 0.55 0.37 17.25 0.52 0.41 17.17 0.53 0.39
DRAGON-2H Vanilla 25.68 0.85 0.17 17.38 0.54 0.40 20.70 0.66 0.31
DRAGON-2H DreamSim 25.77 0.85 0.17 18.11 0.57 0.37 21.17 0.68 0.29
DRAGON-2H DreamSim+CLIP 25.76 0.85 0.17 18.03 0.57 0.37 21.12 0.68 0.29

ORACLE METHODS
Oracle D&G 26.71 0.88 0.15 17.87 0.59 0.37 21.41 0.70 0.28
Oracle All 25.04 0.83 0.18 25.31 0.84 0.18 25.20 0.84 0.18

(a) without Perceptual Regularization (b) with Perceptual Regularization 

Fig. 6. Perceptual regularization reduces prominent extrapolation
artifacts. Shown here are rendering results for the The GateWay Arch
and Eiffel Tower at an intermediate altitude. (a) When training 3DGS on
drone and ground image sets without additional regularization, the ren-
dering at intermediate altitude exhibits haziness and artifacts through-
out the image. (b) The incorporation of perceptual regularization using
DreamSim [8] results in a cleaner rendering.

our approach achieves near-perfect registration for both404

drone and ground images. Additionally, our proposed it-405

erative scheme results in significantly lower rotation and406

position errors.407

5.4 Quantitative Results408

We categorize the test elevations into three groups: ’drone409

and ground’, representing ground truth images; ’mid ele-410

vations’, comprising images from unseen intermediate ele-411

vations; and ’all elevations’, which combines images from412

every elevation. In Table 4, we present the average PSNR,413

SSIM, and LPIPS metrics across all nine scenes for these414

three groups. We note the following observations from the 415

table: 416

5.4.1 2-Headed Methods 417

We first compare our three reconstruction approaches 418

with camera poses obtained from our iterative registra- 419

tion scheme using both ground and drone images. Results 420

demonstrate that incorporating auxiliary perceptual losses 421

based on DreamSim and OpenClip yield additional im- 422

provements across all metrics for mid elevations, resulting 423

in overall reconstruction enhancement. 424

5.4.2 1-Headed Methods 425

Given the limitations of the basic 3DGS in registering both 426

ground and drone images simultaneously, we also report 427

the performance of 1-headed methods. These methods are 428

trained exclusively on either drone images or ground im- 429

ages, showcasing their individual limitations. We find that 430

the Basic ground-only approach is particularly susceptible 431

to occlusions caused by nearby buildings, resulting in sub- 432

optimal registration rates and significant registration errors, 433

and, as a result, suboptimal reconstruction performance. In- 434

corporating the DreamSim auxiliary loss yields substantial 435

enhancements across all elevation groups. 436

5.4.3 1-Headed vs 2-Headed 437

Here, we highlight the full potential of our registration 438

and reconstruction pipeline. Due to registration issues, 3D 439

Gaussian Splatting method cannot readily take advantage of 440

both drone and ground images. Conversely, our 2-headed 441

approaches leverage both drone and ground images and 442

produce much better reconstruction results. 443

5.4.4 Oracle Methods 444

Finally, we investigate an oracle scenario where camera 445

poses are given as part of the train set. Remarkably, our 446
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26.58 | 0.92 | 0.15 15.93 | 0.71 | 0.35 28.39 | 0.94 | 0.1623.48 | 0.85 | 0.23

28.59 | 0.94 | 0.1622.75 | 0.85 | 0.2216.24 | 0.73 | 0.3611.83 | 0.50 | 0.556.17 | 0.38 | 0.50

13.32 | 0.59 | 0.40
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Fig. 7. Rendering results for the Sydney Opera House. We present ground truth images (a, top row), along with renderings produced by
BasicDRAGON (b, middle), and name (c). Each column corresponds to a different elevation, from left to right: Ground, Mid 1, Mid 2, Mid 3, and
Drone. We also provide metrics (PSNR, SSIM, and LPIPS) directly on the images. The green and cyan boxes below the full images are zoomed
in patches. In general, DRAGON outperforms Basic qualitatively, particularly for lower elevations. For Mid 2, the image rendered by Basic exhibits
higher PSNR and SSIM scores compared to the image rendered by DRAGON. But upon closer visual inspection, it is clear that DRAGON achieves
a more accurate reconstruction of the opera house’s true appearance and structure, despite some hallucinatory effects at the top of the image,
which may have impacted the quantitative metrics negatively.

2-headed method, without known camera poses, achieves447

comparable performance by using estimated camera poses448

to the oracle Drone & Ground (D&G) approach. For refer-449

ence, we also report the reconstruction results of an oracle-450

all approach, which has access to both images and camera451

poses from all elevations. Oracle All surpasses all methods452

by a significant margin, underscoring the need for continued453

research to bridge this performance gap.454

5.5 Qualitative Results455

Fig. 7 and Fig. 8 provide a qualitative comparison between456

DRAGON and Basic using two scenes: Sydney Opera House457

and Duomo di Milano. DRAGON consistently yields more458

visually appealing results. While Basic is trained solely on459

drone images, resulting in slightly better PSNR scores at that460

specific elevation, DRAGON demonstrates superior per-461

formance across other elevations, particularly near ground462

levels. For instance, in the case of the Sydney Opera House,463

Basic blends the Opera building with the surrounding water464

area, resulting in an underwater-like rendering for near-465

ground elevations. This color mixing does not occur with466

our DRAGON approach. Additionally, DRAGON produces467

sharper edges for the opera petals and better preserves the468

structure of the building.469

Similarly, in the case of Duomo di Milano, Basic’s per- 470

formance severely deteriorates near the ground elevation. 471

Here, the rich geometric details of the multiple buildings 472

are completely lost in Basic’s reconstruction. This is not the 473

case with DRAGON, where we can recover the architectural 474

details of the buildings. Even at mid-elevations, DRAGON 475

produces sharper details, while Basic hallucinates a black 476

background at the top of the rendered images 477

We further illustrate the qualitative difference between 478

Dragon-2H DreamSim and Dragon-2H DreamSim+CLIP 479

in Fig. 9. When employing DreamSim as our sole per- 480

ceptual regularizer, occasional high-frequency artifacts are 481

introduced, as exemplified by the Space Needle image. 482

When fine-tuning our model with CLIP, sharper edges are 483

achieved in the center of the image. However, it is notice- 484

able that additional haze appears in the lower corners, as 485

observed in the Duomo Di Milano image. 486

6 DISCUSSION AND CONCLUSION 487

Results first demonstrate that DRAGON offers a significant 488

advantage in terms of registering drone and ground footage 489

together at once and retrieving accurate camera parameters. 490

In contrast, running a registration package like COLMAP on 491

its own essentially fails in matching features across sets with 492
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22.95 | 0.76 | 0.20 16.61 | 0.44 | 0.41 22.80 | 0.76 | 0.1919.23 | 0.55 | 0.30

22.93 | 0.77 | 0.1819.31 | 0.54 | 0.3015.73 | 0.37 | 0.4510.81 | 0.20 | 0.638.62 | 0.17 | 0.62

14.09 | 0.37 | 0.50
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Fig. 8. Rendering results for Duomo di Milano. We present ground truth images (a, top row), along with renderings produced by BasicDRAGON
(b, middle), and name (c). Each column corresponds to a different elevation, from left to right: Ground, Mid 1, Mid 2, Mid 3, and Drone. We also
provide metrics (PSNR, SSIM, and LPIPS) directly on the images. In general, DRAGON outperforms Basic qualitatively, particularly for lower
elevations. The green and cyan boxes below the full images are zoomed in patches. For Mid 3, Basic has a higher PSNR score than DRAGON, but
the latter produces images with more distinct details, particularly in the floor patterns and architecture.

Dreamsim

Ensemble

(a) Space Needle (b) Duomo de Milano

OpenClip

Groundtruth

Dreamsim

EnsembleOpenClip

Groundtruth

Fig. 9. Qualitative comparison of DRAGON when using DreamSim and CLIP regularizers for Space Needle and Duomo di Milano. Left:
DreamSim introduces artifacts, such as the duplication of the head of the Space Needle (blue box), while CLIP maintains semantic consistency
without introducing any additional artifacts. Right: CLIP yields sharper edges of the buildings in the center (blue box), but it introduces additional
haze in the lower corner of the image (red box). Conversely, the reconstruction in the corner area with DreamSim does not exhibit this haze.

significant disparities. Rendering results compared to vari-493

ous baseline algorithms show that DRAGON also provides494

benefits in terms of rendering quality. In particular, even495

though we estimated camera poses without any additional 496

information, we achieve comparable or better rendering 497

quality compared to Oracle D&G, which assumes perfect 498
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registration.499

We observe that perceptual regularization is a key step in500

improving rendering quality. Without regularization, 3DGS501

often introduces dramatic artifacts into extrapolated images,502

such as sky-like features (see Fig. 9) and sharp floaters due503

to sharp transitions in viewpoints from drone to ground or504

vice versa. While quantitative metrics do not suggest that505

combining CLIP and DreamSim losses offers an advantage506

to using DreamSim alone, we observe in the qualitative507

results (Fig. 9) that CLIP and DreamSim capture mutually508

exclusive visual phenomenon. For example, CLIP seems to509

better focus details on sharper edges of the buildings near510

the image center, but it introduces additional haze in the511

lower image corners. Further human perceptual studies may512

provide insight into how these perceptual losses interact513

with one another.514

Interestingly, Oracle D&G achieves PSNR/SSIM scores515

of only roughly 17.87/0.59 on mid elevations, suggesting516

that even with perfect registration, the standard 3DGS517

framework exhibits rendering inaccuracies. Some of these518

shortcomings have been explored in a recent work, Vast-519

Gaussian [23]. The focus of our work was not to improve the520

core 3DGS framework, but to show how an NVS algorithm521

like 3DGS may be used to perform 3D modeling on large522

scenes with aerial and ground footage. Our method is523

agnostic to the exact NVS algorithm used and makes no524

specific assumptions tied to 3DGS.525

While we focused this study on large building recon-526

struction, the problem of missing viewpoint region chunks527

(known as the “missing cone” problem in tomography [47])528

is a general challenge for NVS methods. The iterative529

strategy of DRAGON may be used for other missing cone530

scenarios. However, one characteristic specific to building531

reconstruction that helps the iterative approach is that aerial532

footage offers a coarse, global context for the structure which533

may then be refined as the camera lowers in elevation.534

There are several limitations of this work. First,535

DRAGON is a semi-synthetic dataset which allows for ideal536

and precise acquisition conditions. In contrast, real imagery537

will have artifacts and imprecise camera positioning. Sec-538

ond, DRAGON currently requires a prespecified series of539

camera poses at intermediate elevations at which to per-540

form novel view synthesis during the iterative process. We541

currently require these as inputs because it is not trivial542

to specify them apriori, before a common global coordi-543

nate system is established via drone-ground registration.544

A future direction is to compute these trajectories directly545

from the drone/ground footage. Third, as shown in Fig. 9,546

our perceptual regularization functions do not completely547

remove artifacts, and can even inject certain new high-548

frequency artifacts. This is a well-known shortcoming of549

using deep neural networks as loss functions for image550

synthesis [48], [49].551

Finally, measuring perceptual quality of renderings is a552

difficult challenge on its own. As shown in Fig. 7, metrics553

like PSNR/SSIM/LPIPS can be swayed by certain details,554

particularly those in the background, that may not be mean-555

ingful to understand the quality of the building reconstruc-556

tion alone. One way of accounting for this in the future is to557

perform human perceptual studies, or design metrics that558

isolate the structure of interest during evaluation.559
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